
Success, strategy and skill: an experimental study ∗

Christopher Archibald
Computer Science

Department
Stanford University

cja@stanford.edu

Alon Altman
Computer Science

Department
Stanford University

epsalon@stanford.edu

Yoav Shoham
Computer Science

Department
Stanford University

Microsoft Israel R&D Center
Herzliya Pituach, Israel

shoham@stanford.edu

ABSTRACT
In many AI settings an agent is comprised of both action-
planning and action-execution components. We examine the
relationship between the precision of the execution compo-
nent, the intelligence of the planning component, and the
overall success of the agent. Our motivation lies in deter-
mining whether higher execution skill rewards more strategic
playing. We present a computational billiards framework in
which the interaction between skill and strategy can be ex-
perimentally investigated. By comparing the performance of
different agents with varying levels of skill and strategic in-
telligence we show that intelligent planning can contribute
most to an agent’s success when that agent has imperfect
skill.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution; I.2.1 [Artificial In-
telligence]: Applications and Expert Systems—Games; I.2.11
[Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation, Performance

Keywords
Skill, Precision, Computational Billiards, Strategy, Planning

1. INTRODUCTION
Skill, or the ability of a player to perform the mental and

physical tasks necessary to succeed in a particular game or
undertaking, has many dimensions. Among these are strate-
gic skill and execution (or raw) skill. An example of these
distinct facets of skill can be seen in the game of golf. A
golfer, often with the aid of a caddy, determines which shot
to attempt from a given position. The golfer then attempts
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to execute the shot as planned. The ability to accurately
execute this planned shot is the golfer’s execution skill. The
ability of the golfer and caddy to decide which shot to at-
tempt, taking into account both the golfer’s execution skill
and the desired shot result, is the golfer’s strategic skill. The
success of a golfer depends on both the ability to plan appro-
priate shots and on the ability to perform shots as planned.

These two dimensions of skill are particularly evident in
computational pool competitions. In these competitions a
computer agent is granted a certain time limit in which to
plan a shot for execution on a virtual pool table. The chosen
shot is then perturbed by the addition of noise. This noise
represents the agent’s raw skill level in the game. In tour-
naments held to date, the execution skill has been uniform
among all players and also quite high, comparable to the
skill level of expert human players. We begin with the de-
ceptively simple-sounding question: if the tournament were
played at a lower raw skill level, would the game become
more strategic or less so?

There has been relatively little previous work done on
modeling or reasoning about skill in games. In [10] Larkey
and colleagues define skill as “the extent to which a player,
properly motivated, can perform the mandated cognitive
and/or physical behaviors for success in a specific game”.
They use the game of sum poker to analyze the impact of
different levels and types of skill on player success. Agents
with intuitively differing skill levels are presented, and their
performance compared. They separate skill in playing a spe-
cific game into two separate components: planning skill and
execution skill. Planning skill refers to the ability of the
agent to plan and decide on a strategy in the game, as well
as the quality of the strategy chosen. Execution skill refers
to the ability of an agent to realize its chosen strategy in the
game. They focus their investigation on elements of plan-
ning skill and conclude that skill is an important feature
of real games, but that it is messy to represent and reason
about skill, even for simple games.

Other work which involves skill [6, 7, 5] has as its main
focus the skill of the game instead of the skill of the players.
The goal in such work is to classify games either as games of
skill or as games of chance. Each of these papers presents a
different method for doing this. The common idea through-
out these papers is that in a game of skill a player should
have more influence on the outcome of the game, while in a
game of chance a player has less control. This distinction is
of legal importance in communities where games of chance



require a special license to operate. As in [10], skill is used
in these works to include any characteristics of players that
can influence their performance in a game.

Our work is closer to that in [10] as we are also concerned
with the impact of a player’s skill on their success. We
differ in our focus on execution skill, whereas Larkey only
minimally considered this aspect. Our motivating domains
involve a specific form of execution skill: the ability of the
player to accurately execute a desired action.

In the remainder of this paper we seek to answer our moti-
vating question empirically, using a computational billiards
framework. We vary three parameters: raw skill (repre-
sented by the noise added to agents’ shots), speed of thought
(represented by the amount of time allocated for computing
the next shot), and sophistication of strategy (represented
by using different planning agents, ranging from the current
world champion billiards agent to agents with obviously in-
ferior strategies), and we examine the impact of their com-
bination on the success of the pool-playing agent.

2. BACKGROUND
In this section the setting of the experiment is described

more concretely, including detail about the game played in
the experiment and background on computational pool.

Figure 1: Pool table racked for 8-ball

2.1 Rules of 8-ball
The game played in computational pool tournaments to

date, and used as a basis for our experiment, is 8-ball, based
on the official rules of the Billiards Congress of America [3].
8-ball is played on a rectangular pool table with six pockets
which is initially racked with 15 object balls (7 solids, 7
stripes, and one 8-ball), and a cue ball (see Figure 1). The
play begins with one player’s break shot. If a ball is sunk
on the break shot, the breaking player keeps his or her turn,
and must shoot again. Otherwise, the other player gets a
chance to shoot.

For a shot to be legal, the first ball struck by the cue
ball must be of the shooting player’s type, and the cue ball
must not enter a pocket itself. The first ball legally pocketed
after the break determines which side (solids or stripes) each
player is on. Players retain their turn as long as they call
(in advance) an object ball of their type and a pocket and
proceed to legally sink the called ball into the called pocket.
After all object balls of the active player’s side have been
sunk that player must attempt to sink the 8-ball. At this
point, calling and legally sinking the 8-ball wins the game.

2.1.1 Winning-off-the-break
A perfect game by an 8-ball player consists of the player

first breaking and then proceeding to sink, in consecutive
shots, all the balls of one type (stripes or solids), followed
by the 8-ball. This results in the breaking player winning the
game without the opponent having a chance to take a shot.
We call such a win a win-off-the-break. It is clear that an
agent’s win-off-the-break percentage, which is the fraction
of the time they are expected to win-off-the-break, is corre-
lated with superior play. What is less clear is how the win
percentage of an agent in a full 8-ball match against an op-
ponent is correlated with the win-off-the-break percentages
of the two agents. It seems reasonable that the agent with
the higher win-off-the-break percentage would be expected
to win the match, but this ignores the possibility that agents
could play a defensive style, rarely winning off the break, but
forcing the opponent into tough situations, which could then
lead to victory for the defensive player. Reliably establishing
that win-off-the-break percentage can be used to predict ac-
tual performance in head-to-head matches is a sizable task,
one which we intend to pursue in the future. For current
purposes we consider the win-off-the-break percentage to be
fully descriptive of an agent’s success level. This can be
thought of as having the agents compete in a single player
game where the goal is to win-off-the-break. An agent then
beats another agent if it wins off-the-break more frequently.
This setting is closely related to more single agent games
like golf.

2.2 Computational pool
Computational pool is a relatively new game, and was

introduced by the International Computer Games Associa-
tion (ICGA) in recent years as a new game to the Computer
Olympiad. Billiards games have several characteristics that
make them unique among games played by computer agents,
and indeed among games in general [2]. In particular, they
have continuous state and action spaces, actions are taken
at discrete-time intervals, there is a turn-taking structure,
and the results of actions are stochastic. This combination
of features is unique and differs from other competitive AI
domains such as chess [12], poker [4], robotic soccer [13], or
the Trading Agent Competition [14]. Thus, the challenge of
billiards is novel and invites application of techniques drawn
from many AI fields such as path planning, planning under
uncertainty, adversarial search [9] and motion planning [11].

Our experiments were run in a manner similar to past
computational pool tournaments [8]. We use a client-server
model where a server maintains the state of a virtual pool
table and executes shots sent by client software agents on
a physics simulator. Each agent has access to an identical
version of the physics simulator which they can use to sim-
ulate shots internally as part of their shot selection. In the
ICGA tournaments, each agent was given a 10 minute time
limit per game during which to choose shots.

An action, or shot, in computational pool is represented
by five real numbers: v, ϕ, θ, a, and b. v represents the cue
stick velocity upon striking the cue ball, ϕ represents the
cue stick orientation, θ represents the angle of the cue stick
above the table, and a and b designate the position on the
cue ball where the cue stick strikes, which plays a big role
in imparting spin, or “english”, to the cue ball. ϕ and θ are
measured in degrees, v in m/s, and a and b are measured in
millimeters.



2.2.1 Modeling execution skill
Since the physics simulator is deterministic, zero-mean

Gaussian noise is added to each input shot parameter on
the server side to simulate imperfect execution skill on the
part of the agents. The result of the perturbed shot is then
communicated back to the clients.

The ICGA tournaments have utilized two different Gaus-
sian noise models over the years, with the most recent be-
ing Gaussian noise with standard deviations of σθ = 0.1,
σϕ = 0.125, σV = 0.075, σa = 0.5, σb = 0.5. The spe-
cific level of noise was a much discussed topic prior to each
tournament. The critical issue in this debate was deciding
which raw skill level would reward and encourage the type
of strategic play desired by the tournament organizers. The
lack of justification for this decision was one of the main
reasons we undertook the experiment we now describe.

3. DESCRIPTION OF THE EXPERIMENT
In this section we describe the agents used in the experi-

ment and the design of the experiment itself.

3.1 The different agents
In order to test a variety of strategy types and also to en-

sure that experimental results obtained were not specific to
the design of a single agent, we used four separate agents in
our experiments. Two of these agents were designed specifi-
cally for this experiment, while the other two were variations
of the defending champion of the ICGA computational pool
tournament. We include brief overviews of the agent designs
here, with more comprehensive details in the Appendix.

3.1.1 CueCard (CC)
CueCard won the gold medal at the 2008 ICGA com-

putational pool tournament, and as such is used here as
the most intelligent agent. It is described in some detail in
[1]. From a given table state CueCard considers straight-in
shots (shots where the cue ball hits an object ball directly
into a pocket), more complex shots (multiple ball and/or
rail collisions), and special shots designed to break up clus-
ters of balls. Random shot variants (varying a, b and θ)
are attempted for each feasible direction and velocity con-
sidered. Each of these shots is simulated with noise between
25 and 100 times, depending on available time. Resulting
states are evaluated based on the number and quality of
straight-in shots feasible in that state. The value of a shot
is the average evaluation of the resulting states of all simula-
tions of that shot. In order to refine the value estimates for
the best 20 shots, another level of shots are generated and
evaluated beginning from the states which were the results
of the simulations of those 20 shots. The best shot found
overall, after having its value refined by this second level of
look-ahead search, is chosen for execution.

3.1.2 SingleLevel (SL)
The second agent we used in our experiments is Sin-

gleLevel, which is exactly the same agent as CueCard,
except with the second level of search disabled. SingleLevel
instead spends that time exploring more shot variants from
the initial table state.

3.1.3 OptimisticPlanner (OP)
This agent is a good planner, but does not reason effec-

tively about the effects of imperfect raw skill. Optimistic-

Planner tries only straight-in shots and assumes that if a
shot succeeds then the resulting state will be the same as
the result of the noiseless shot. Straight-in shots are ranked
using a shot difficulty look-up table. States are evaluated us-
ing the same evaluation function used by CueCard. Opti-
misticPlanner uses a depth-first search approach to refine
the evaluation of the top 5 shots from each state, search-
ing as deep as time will allow. Since only the noiseless shot
is simulated, OptimisticPlanner can plan further ahead
than CueCard and ensure that its entire plan (as much as
it had time to search) is theoretically feasible.

3.1.4 MachineGunner (MG)
This agent is arguably of low sophistication. Machine-

Gunner does not plan ahead, but does ensure that selected
shots are robust with respect to its execution skill level. Ma-
chineGunner repeatedly selects an aiming direction at ran-
dom. It then simulates a full velocity shot in that direction,
seeing if the cue ball contacts a legal target ball. If legal con-
tact is made, then MachineGunner attempts variants of
this shot with different velocity values, simulating any non-
fouling shots 50 times. Each shot is evaluated based only
on the number of times it was successful out of the 50 times
it was simulated. When enough potential shots have been
found, MachineGunner randomly attempts small varia-
tions of the best 10 shots. The most successful shot found
overall is selected for execution.

3.1.5 Agent comparison
CueCard and the other three agents, each of which was

created specially for this experiment, were chosen to repre-
sent extreme types of strategic skill. MachineGunner and
OptimisticPlanner were designed to be of lower strategic
skill, but in two different dimensions. OptimisticPlanner
is a very good planner, planning many shots ahead and only
choosing shots that are the first steps of long-term successful
plans. On the other hand, OptimisticPlanner is ignorant
of its own execution skill level. It doesn’t utilize knowledge
of the raw skill level at which it is competing, but instead
only weighs shots using their relative difficulty. Machine-
Gunner, in contrast, utilizes its knowledge of its raw skill
level to its advantage, simulating each shot 50 times to de-
termine that shot’s quality. Often, when many shots are
available, MachineGunner is able to find a shot that is
successful on all 50 of its simulations. MachineGunner’s
shortcomings are in planning. Shots are evaluated based
only on their likelihood of success, without considering the
strategic possibilities that exist in the resulting table state.

CueCard and SingleLevel are agents of higher strategic
skill. They utilize some forward planning and also simulate
shots to deal with the effects of noise. The only difference
in their strategies is the depth of the forward planning they
perform.

3.2 Topics of investigation
As stated earlier, the high level goal of our experiment

was to investigate the effects that strategic skill and execu-
tion skill have on the success of an agent. In this section we
briefly describe how we represented and varied both types of
skill in our experiment. We then discuss the specific ques-
tions which we sought to answer in this experiment.



3.2.1 Strategic skill
Strategic skill in this experiment was varied in two dimen-

sions. First, we varied the sophistication of the strategy.
This was done by using the four agents described in Section
3.1, each of which has a different level of strategic sophistica-
tion. The speed of thought was also varied for each of these
agents. This was done by modifying the time limit that an
agent had for computing its shots during a single game. Ad-
ditional time during which to plan a shot generally increases
the strategic skill of an agent.

3.2.2 Execution Skill
To vary the execution skill of the agents, we varied the

standard deviations of the Gaussian noise that was added to
each of their shots. Since there are five standard deviations,
each of which can be varied individually, there are a large
number of ways to change the raw skill of the agents. To
simplify the range of possible raw skills, we decided to use
the ICGA noise model as a baseline and modify it by scaling
each standard deviation by the same factor.

3.2.3 Motivating Questions
The experimental design and analysis were driven by find-

ing answers and providing insight into the following ques-
tions:

• How does changing the execution skill of an agent af-
fect its success? It seemed clear from the beginning
that less execution skill would lead to less success, but
the question still remained: how quickly does perfor-
mance drop off? Are all agents equally affected by
reductions in raw skill?

• Does a high level of raw skill reward a high level of
strategic skill? Alternatively, is strategic skill less im-
portant at lower skill levels? Does perfect raw skill
maximize the importance of strategic skill to an agent’s
performance?

• If our goal is to identify the agent with the highest
level of strategic skill, at which raw skill level should a
tournament be held? Can we show that the decisions
reached for the ICGA tournaments were reasonable, or
does something else make more sense?

3.3 Data generation and processing
Our experiment consisted of having each agent play games

with different raw skill levels and different amounts of time
available. Since break shots are typically generated offline
and fine-tuned for a specific noise level, we modified the
rules of 8-ball slightly to ensure that any difference in break
shot success at the different raw skill levels didn’t impact
the overall results. Each agent used the same break shot,
and each agent was allowed to re-break until the break shot
was successful. Each agent also used the same method for
dividing up the total game time limit into time limits for
the individual shot1. For each game the agent played until
either they won the game or lost their turn through a missed
shot. After each game we recorded whether or not the agent
won that game off-the-break. On the order of 20,000 games
were played for each agent, with raw skill levels randomly
chosen from 0 to 4.5 times the tournament noise model, and

1CurrentShotTime = Total time left
# balls left + 3

time limits randomly chosen from 20000 to 120000 simu-
lation counts. We used simulation counts as a measure of
time for our experiment so that the timing would be consis-
tent across the different machines on which the experiments
were run. The physics simulation is by far the most time-
consuming portion of any of these agent strategies. An av-
erage simulation takes about 3 ms, so our simulation count
limits correspond roughly to granting the agents between 1
and 6 minutes of computation time per game. An example
plot of this raw data for CueCard is shown in Figure 2.
Each black dot in the figure corresponds to a game played
by CueCard with that noise level and time limit until it
either won or lost its turn.
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Figure 2: Raw data showing where CueCard did and
didn’t win-off-the-break

The raw data for each agent was smoothed using convo-
lution with a two-dimensional Gaussian with standard de-
viations equal to 6000 simulation counts in the time limit
dimension and 0.25 in the noise dimension. This gives a
smoothed estimate of the win-off-the-break percentage for
each agent at each combination of time limit and raw skill
level.

4. RESULTS OF THE EXPERIMENT
In this section we describe the results of our experiment.

In Section 4.1 we discuss the smoothed results and then in
Section 4.2 the effects of execution skill on player perfor-
mance. We then discuss perhaps the most surprising of our
results, concerning the relationship between raw skill and
the value of strategic skill, in Sections 4.3 and 4.4.

4.1 Winning-off-the-break
After the raw data was smoothed, the resulting dataset

contained an estimate of the win-off-the-break percentage
for each agent competing at each time limit and raw skill
level. Figure 3 contains a contour graph for each agent dis-
playing this smoothed data.

Since a win-off-the-break is simply a binary indicator of
agent success, we also investigated using the number of balls
left on the table when the agent loses its turn to measure
success. For a win-off-the-break this number would be 0,
and for a miss on the first post-break shot it would be 7.
The smoothed data using this measure of agent success is
shown in Figure 4. It is apparent that each of these two data
sources display the same high level characteristics, with the
main difference being in the resolution of the data in those
cases where the win-off-the-break percentage is low. The
shape and location of the gradient curves remain consistent
for each agent across both types of contour graphs. Since
the two data sources are generally in agreement with each
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Figure 3: Average win-off-the-break percentage for
each agent

other, in what follows we utilize only the win-off-the-break
percentage estimates.
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Figure 4: Average number of balls left when turn is
lost for each agent

4.2 The value of execution skill
One of our first questions was simply to see how skill im-

pacts the performance of the players. From the contour
plots in Figures 3 and 4 it is clear that while increased skill
and increased time each benefit the agents, raw skill varia-
tions in the range of the experiment (from 0 to 4.5) have a
much larger impact on player performance than time limit

variations in the simulation count range of the experiment
(20000 to 120000 simulation counts). From this data we can-
not conclusively say that raw skill is more important than
time, since we do not know what happens as we increase the
time limit dramatically (to hours or days, say), but certainly
for reasonable time limits and raw skill levels this is true.

In Figure 5 the maximum2 win-off-the-break percentage
for each agent at each raw skill level is displayed. This gives
a sense of how the agents’ expected performance in the win-
off-the-break game compare as the raw skill level is varied.
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Figure 5: Maximum win-off-the-break percentage
for each agent

Clearly, greater raw skill has a positive impact on agent
performance in this game. For example, a CueCard agent
with particularly low raw skill (a noise level greater than
2.5) would be expected to lose to a MachineGunner agent
with perfect raw skill in a win-off-the-break contest. This is
despite the gross difference in their levels of strategic skill.
This matches the intuition of such situations, that great raw
skill can overcome strategic deficiencies. Obviously, raw skill
is important for an agent, and an agent can reap large divi-
dends by improving its execution skill level.

4.3 The value of strategic skill: thought speed
Imagine that an agent designer has the ability to increase

the amount of time that her agent has to make decisions.
For example, perhaps the designer determines that some
component of the agent could be optimized in order to run
faster and be more efficient. For most agent designs, grant-
ing the agent this extra planning time should only increase
its performance. But the question remains: how much dif-
ference would this added time make to the performance of
the agent? Is this difference the same for different agents?
Is it the same for the same agent at different raw skill levels?
If not, then at which raw skill level is this added strategic
skill of most value to the agent?

For a specific raw skill level, we can determine the differ-
ence that time can make to that agent’s win-off-the-break
percentage by finding the difference between that agent’s

2Over all time limits



maximum and minimum win-off-the-break percentages for
each raw skill level. In each case the maximum and mini-
mum were computed over all of the experiment time limits.
In this way, we can see how much the strategic skill of an
agent, as measured in number of simulations allowed, mat-
ters to the performance of an agent at each raw skill level.
These differences in performance due to time variations for
each agent at each raw skill level are shown in Figure 6.
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Figure 6: Difference that time makes to each agent
at each raw skill level.

We can see that for the more sophisticated agents Cue-
Card and SingleLevel, time is most valuable when some
level of imperfect raw skill is present: their plot lines peak
at raw skill levels of approximately 1.4 and 1.9 respectively.
For the less sophisticated agents MachineGunner and Op-
timisticPlanner, time is most valuable when raw skill is
perfect. We hypothesize that this is largely due to the fact
that these less sophisticated agents are not making good use
of the extra time within their algorithm. For example, in a
situation where MachineGunner finds a perfectly success-
ful shot early on in the random angle generation, extra time
will never change the decision of the agent, since no shot
could be valued higher.

We return to the problem of selecting a noise level for the
computational billiards tournament. The intuition argued
by some was that extremely low noise levels would place
the highest value on intelligent planning, which was in line
with the goals of the tournament to increase the strategic
ability of computational billiards software. The fact that for
the more sophisticated agents, CueCard and SingleLevel,
time is most valuable with some level of noise sheds light on
this debate.

For example, imagine that two slightly different programs
are entered in the tournament. One is the basic version
of CueCard. The other uses the same high level strategy
as CueCard, but through innovative techniques has man-
aged to run much faster than CueCard, giving this other
agent the ability to simulate more shots that CueCard. It
is clear that the more efficient agent has higher strategic in-
telligence. If the goal of the tournament is to identify the
player with the highest strategic skill then this data shows

that the ideal noise level for the tournament would be a noise
level of approximately 1.4. Holding the tournament without
noise, or at a significantly higher noise level would decrease
the value of the difference in strategic skill that the more ef-
ficient CueCard agent has, and would increase the chance
that the original CueCard would win, despite not having
the most strategic skill amongst the competitors. The fact
that the value of superior strategic skill is maximized at an
imperfect raw skill level is somewhat unintuitive, although
the raw skill levels that maximize this value are of high raw
skill and close to the original tournament noise level (1.0
on our scale), surprisingly justifying the final decision they
reached.

4.4 The value of strategic skill: sophistication
of strategy

For agents competing in a competition, the objective is
to outperform the opposition. In our setting, agents would
want to win-off-the-break more frequently than their oppo-
nent in a head-to-head match. Consider a setting in which
an agent could select the raw skill level at which the compe-
tition was played. The question naturally arises: which raw
skill level would they pick, so as to maximize their chances
of winning? Assuming that an agent knew the win-off-the-
break percentage at different raw skill levels for itself and its
opponent, it would select the raw skill level at which the dif-
ference between the two win-off-the-break percentages was
maximized. For the agent with the higher expected win-off-
the-break percentage this raw skill level is the one at which
the difference in strategic skill between the two agents is of
greatest value. In Figure 7 the average difference (over all
time limits) in win-off-the-break percentage between Cue-
Card and the other 3 agents is shown for each raw skill
level.
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Figure 7: Difference between CC and other agents

This figure shows that CueCard, in facing Optimistic-
Planner and MachineGunner, would prefer that the tour-
nament be held with some small level of noise (around 0.5),
since this maximizes the chance that CueCard will beat
them. In other words, the value of CueCard’s superior
strategic skill is maximized when the game is played at



this small noise level. Perfect raw skill compensates some-
what for the strategic shortcomings of the less sophisticated
agents. Figure 7 shows that CueCard’s planning is more
robust to increases in the raw skill level of play. Against
SingleLevel, an opponent with comparable strategic skill,
the raw skill level makes almost no difference, as the two
agents are evenly matched at all raw skill levels.

On the other hand, Figure 8 shows the same informa-
tion for the case of OptimisticPlanner against Machine-
Gunner. Against MachineGunner, the worst performing
of the four agents, OptimisticPlanner would prefer the
game to be played without noise. This is natural, since
OptimisticPlanner’s forward planning will be most useful
when the noiseless shot predictions are close to what really
occurs in the game. Against better opponents, Optimistic-
Planner would prefer the game be played at as high a noise
level as possible, since this will limit the chance for the op-
ponent to beat him, as both agents will have a very low
win-off-the-break percentage .
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Figure 8: Difference between OP and MG

Interestingly, in considering the value of superior strategic
skill, we see again that the highest value is achieved when
there is some noise in the game. Agents with different lev-
els of strategic sophistication differ in the rate at which their
performance decreases as their raw skill is decreased. Agents
with less strategic sophistication could prefer a tournament
without noise to a tournament with some level of noise. As-
suming again that the goal of a tournament is to identify
the agent with the highest strategic skill level, this supports
the decision to conduct the tournament with some level of
noise. It also suggests the possibility of having separate
tournaments at different noise levels, since agents relative
performance can differ greatly as the raw skill level changes.

5. CONCLUSIONS
We used a computational billiards framework to experi-

mentally analyze the effects of varying strategic and execu-
tion skill on the success of an agent in a game of win-off-
the-break 8-ball. Our most striking finding is that superior
strategic skill is most identifiable when agents have imper-
fect execution skill. This result has implications for the de-

sign of methods for identifying agents of high strategic skill,
and we hypothesize that as a general principle it applies
to other domains with the action-planning/action-execution
dichotomy.

Two directions for future work appear particularly promis-
ing. The first is to investigate skill from a theoretical stand-
point. A rigorous treatment of this topic could shed consid-
erable light on the role that raw skill plays in agent interac-
tion. The second, and perhaps more immediate direction, is
to use the results here to make informed decisions about the
running of future computational billiard tournaments. Care-
ful and justified design of future competitions should lead to
the development of new agent strategies which are more ro-
bust to changes in noise level, and perhaps even new strate-
gies which can significantly outperform previous agents at
certain noise levels.
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APPENDIX
A. AGENT DESCRIPTIONS

Given a state of the table, each agent uses their corre-
sponding steps to select a shot.

A.0.1 CueCard (CC)

1. For each legal ball and pocket, a set of directions ϕ,
each with a minimum velocity v0, is generated in at-
tempt to sink the ball into the pocket. In this step
we generate both straight-in shots (where the object
ball goes directly into the pocket), more complex shots
(involving more than one collision), and special shots
designed to disperse clusters of balls.

2. For each of these (ϕ, v0) pairs, discrete velocity values,
vi, between v0 for this shot and the maximum allowed
velocity vMAX , are generated. The (ϕ, vi) pairs that
are deemed feasible (i.e. pocket a ball with no Gaussian
noise added) are passed to the next step.

3. For each feasible (ϕ, vi) pair, variants are generated by
randomly assigning feasible values to a, b and θ.

(a) Each such variant is simulated between 25 and 100
times, depending on available time.

(b) The resulting states (projected table state after
shot simulations) are scored using an evaluation
function, allowing the calculation of an average score
for each shot variant. The evaluation function es-
timates the success probability (using a lookup-
table) for each straight-in shot from that state.
A weighted sum of the success probability for the
three best shots is the value of the state 3.

(c) The top two shot variants for each (ϕ, vi) pair are
selected.

(d) For these top two variants, the states resulting from
the simulations in Step 3a are clustered into groups
of similar table states. A representative state is
chosen for each cluster, and a weighted set of rep-
resentative states is formed.

4. The top 20 shot variants among all shots tested are
selected for further evaluation.

5. To refine the evaluation of each of these 20 shots, we
execute a second level of search starting with the repre-
sentative resulting states of these 20 shots. The search
method used at this second level essentially repeats the
above process (Steps 1–3) with smaller constants, re-
turning the average evaluation for the best shot.

6. After the representative state evaluations have been ad-
justed, a new evaluation for each of the 20 shot variants
is generated, and the best variant overall is chosen.

A.0.2 SingleLevel (SL)
SingleLevel is the exact same agent as CueCard, ex-

cept with the second level of search disabled (Section A.0.1,
Step 5). SingleLevel instead spends that time exploring
more shot variants from the initial table state.

3State value = 1 ∗ p1 + 0.33 ∗ p2 + 0.15 ∗ p3, where pi is the
success probability of the i-th most probable shot

A.0.3 OptimisticPlanner (OP)

1. For each legal ball and pocket, a set of directions ϕ,
each with a minimum velocity v0, is generated in at-
tempt to sink the ball into the pocket. In this step
only straight-in shots are generated.

2. Same as Step 2 for CueCard

3. For each feasible (ϕ, vi) pair, variants are generated by
randomly assigning feasible values to a, b and θ.

(a) Each such variant is simulated a single time, with-
out noise being added.

(b) The resulting state is scored using the same eval-
uation function as CueCard. This score is then
multiplied by the estimated success probability of
the shot (using a lookup-table).

4. The top 5 shot variants among all shots tested are se-
lected for further evaluation.

5. For each of these 5 shot variants, we divide the time
equally and perform a depth-first search as deep as time
allows, repeating Steps 1 - 4. The value of a state is
set to be the value of the best shot available from that
state.

6. The best shot found after each states value has been
refined by the depth-first search is returned.

A.0.4 MachineGunner (MG)

1. Repeat the following Steps 1a - 1c until either 10 suc-
cessful shots have been found, or at least 1 successful
shot has been found and 80 percent of the shot time
has elapsed.

(a) Randomly generate a direction ϕ.

(b) For this ϕ, simulate a full-power shot (with no noise
added) in that direction. If the cue ball makes le-
gal contact with another ball, continue to Step 1c,
otherwise return to Step 1a.

(c) Discretize v between its minimum and maximum
value. For each feasible shot with this ϕ and v,
simulate the shot 50 times and record the frequency
of success for that shot. Add to a priority queue of
shots, ordered by success rate.

2. Divide the remaining time equally among the best 10
shots found. For each shot do 50 times:

(a) Randomly assign feasible values to a, b, and θ, to
go with this shot’s ϕ and v.

(b) Simulate this shot 50 times and keep track of the
most successful shot overall.

3. Return the most successful shot. If no successful shot
has been found at all, then select the shot which fouled
least. If no shots did not foul then intentionally scratch
by tapping the ball.


